PDA

View Full Version : [SOLVED] What is the Difference Between GSM and CDMA? THIS HELP ME ALOT SO I SHARE



ELHULK
04-06-2010, 12:37 PM
In cellular service there are two main competing network technologies: Global System for Mobile Communications (GSM) and Code Division Multiple Access (CDMA). Cellular carriers including Sprint PCS, Cingular Wireless, Verizon and T-Mobile use one or the other. Understanding the difference between GSM and CDMA will allow you to choose a carrier that uses the preferable network technology for your needs.

Coverage: The most important factor is getting service in the areas you will be using your phone. Upon viewing competitors' coverage maps you may discover that only GSM or CDMA carriers offer cellular service in your area. If so, there is no decision to be made, but most people will find that they do have a choice.

Data Transfer Speed: With the advent of cellular phones doing double and triple duty as streaming video devices, podcast receivers and email devices, speed is important to those who use the phone for more than making calls. CDMA has been traditionally faster than GSM, though both technologies continue to rapidly leapfrog along this path. Both boast "3G" standards, or 3rd generation technologies.

EVDO, also known as CDMA2000, is CDMA's answer to the need for speed with a downstream rate of about 2 megabits per second, though some reports suggest real world speeds are closer to 300-700 kilobits per second (kbps). This is comparable to basic DSL. As of fall 2005, EVDO is in the process of being deployed. It is not available everywhere and requires a phone that is CDMA2000 ready.

GSM's answer is EDGE (Enhanced Data Rates for GSM Evolution), which boasts data rates of up to 384 kbps with real world speeds reported closer to 70-140 kbps. With added technologies still in the works that include UMTS (Universal Mobile Telephone Standard) and HSDPA (High Speed Downlink Packet Access), speeds reportedly increase to about 275—380 kbps. This technology is also known as W-CDMA, but is incompatible with CDMA networks. An EDGE-ready phone is required.

In the case of EVDO, theoretical high traffic can degrade speed and performance, while the EDGE network is more susceptible to interference. Both require being within close range of a cell to get the best speeds, while performance decreases with distance.

Subscriber Identity Module (SIM) cards: In the United States only GSM phones use SIM cards. The removable SIM card allows phones to be instantly activated, interchanged, swapped out and upgraded, all without carrier intervention. The SIM itself is tied to the network, rather than the actual phone. Phones that are card-enabled can be used with any GSM carrier.

The CDMA equivalent, a R-UIM card, is only available in parts of Asia but remains on the horizon for the U.S. market. CDMA carriers in the U.S. require proprietary handsets that are linked to one carrier only and are not card-enabled. To upgrade a CDMA phone, the carrier must deactivate the old phone then activate the new one. The old phone becomes useless.

Roaming: For the most part, both networks have fairly concentrated coverage in major cities and along major highways. GSM carriers, however, have roaming contracts with other GSM carriers, allowing wider coverage of more rural areas, generally speaking, often without roaming charges to the customer. CDMA networks may not cover rural areas as well as GSM carriers, and though they may contract with GSM cells for roaming in more rural areas, the charge to the customer will generally be significantly higher.

International Roaming: If you need to make calls to other countries, a GSM carrier can offer international roaming, as GSM networks dominate the world market. If you travel to other countries you can even use your GSM cell phone abroad, providing it is a quad-band phone (850/900/1800/1900 MHz). By purchasing a SIM card with minutes and a local number in the country you are visiting, you can make calls against the card to save yourself international roaming charges from your carrier back home. CDMA phones that are not card-enabled do not have this capability, however there are several countries that use CDMA networks. Check with your CDMA provider for your specific requirements.

According CDG.org, CDMA networks support over 270 million subscribers worldwide, while GSM.org tallies up their score at over 1 billion. As CDMA phones become R-UIM enabled and roaming contracts between networks improve, integration of the standards might eventually make differences all but transparent to the consumer.


The chief GSM carriers in the United States are Cingular Wireless, recently merged with AT&T Wireless, and T-Mobile USA. Major CDMA carriers are Sprint PCS, Verizon and Virgin Mobile. There are also several smaller cellular companies on both networks.
**Mod edit added info for OP**
3GPP Long Term Evolution (LTE), is the latest standard in the mobile network technology tree that produced the GSM/EDGE and UMTS/HSPA network technologies [1],[2]. It is a project of the 3rd Generation Partnership Project (3GPP), operating under a name trademarked by one of the associations within the partnership, the European Telecommunications Standards Institute.
The current generation of mobile telecommunication networks are collectively known as 3G (for "third generation"). Although LTE is often marketed as 4G, first-release LTE does not fully comply with the IMT Advanced 4G requirements. The pre-4G standard is a step toward LTE Advanced, a 4th generation standard (4G)[3] of radio technologies designed to increase the capacity and speed of mobile telephone networks. LTE Advanced is backwards compatible with LTE and uses the same frequency bands, while LTE is not backwards compatible with 3G systems.
MetroPCS, Verizon Wireless and AT&T Mobility in the United States and several worldwide carriers announced plans, beginning in 2009, to convert their networks to LTE. The world's first publicly available LTE-service was opened by TeliaSonera in the two Scandinavian capitals Stockholm and Oslo on the 14th of December 2009. LTE is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) which was introduced in 3rd Generation Partnership Project (3GPP) Release 8. Much of 3GPP Release 8 focuses on adopting 4G mobile communication's technology, including an all-IP flat networking architecture. On August 18, 2009, the European Commission announced it will invest a total of €18 million into researching the deployment of LTE and the certified 4G system LTE Advanced.[4]
While it is commonly seen as a mobile telephone or common carrier development, LTE is also endorsed by public safety agencies in the US[5] as the preferred technology for the new 700 MHz public-safety radio band. Agencies in some areas have filed for waivers[6] hoping to use the 700 MHz[7] spectrum with other technologies in advance of the adoption of a nationwide standard.

Dex
04-06-2010, 01:25 PM
thread moved seemed much better in this forum then where it was placed